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Abstract: A model of a three-component solution of difunctional ("diatomic") molecules of the types AA, AB, 
and BB is discussed. The postulated interactions are such as to favor the contacts of A ends with A ends and of B 
ends with B ends over the contacts of A ends with B ends. At low concentrations of the species AB there is phase 
separation into an AA-rich and a BB-rich phase, but a sufficiently high concentration of AB induces mutual solu­
bility of AA and BB, and a plait point (critical point) is ultimately reached beyond which the solution is in equi­
librium as a single phase. Near the plait point the shape of the binodal curve (two-phase coexistence curve) in 
the isothermal composition plane differs from the classical parabolic shape. The difference is analogous to that 
between the nearly cubic coexistence curves for liquid-vapor equilibrium found in real one-component fluids 
and the parabolic coexistence curves predicted by those equations of state of which the van der Waals equation is 
the prototype. Composition fluctuations in the neighborhood of the plait point, which are responsible for critical 
opalescence, are also discussed, and the rapidity with which the fluctuations diverge as the plait point is approached 
is likewise found to be nonclassical. At high concentrations of AB the model also shows an antiferromagnetic-
like ordering in which the ordered state is roughly analogous to a liquid crystal or to the ordered state of a soap. 

1. Introduction 

Water and chloroform are almost completely im­
miscible, but when ethanol is added to the mix­

ture the mutual solubility of the first two constituents 
is increased. As the concentration of ethanol is raised, 
the water-rich and chloroform-rich phases that are in 
equilibrium become progressively more alike until 
at some critical concentration of ethanol, which de­
pends on the temperature, a plait point (critical point) 
is achieved where the two phases lose their separate 
identities and become a single, homogeneous liquid 
solution2 (Figure 1). The action of the ethanol may 
perhaps be ascribed to its difunctionality. A number 
of ethanol molecules can surround a water molecule 
with the hydroxyl ends of the former pointing inward; 
the resulting complex consists outwardly of ethyl 
groups and is thus easily accommodated in the chloro­
form-rich phase. In this way water would have been 
made more soluble in chloroform than it would have 
been in the absence of ethanol, and the same argument 
with the roles of ethyl and hydroxyl reversed would 
account for the action of ethanol in increasing the 
solubility of chloroform in water. The point here is 
not to assert that this is the mode of action of the 
ethanol, for that is highly conjectural, but rather to 
observe that such a mechanism would be sufficient to 
produce a plait point of the character observed in the 
water-chloroform-ethanol system. This mechanism 
is reminiscent of one frequently invoked to explain the 
action of a soap. Its essential features are abstracted 
and incorporated in the model defined in section 2. 

A one-component fluid near its liquid-vapor critical 
point is known to have properties deviating in im-

(1) (a) Work supported by a grant from the Office of Saline Water, 
U. S. Department of the Interior, (b) National Science Foundation 
Predoctoral Fellow. 

(2) A general description of the phenomenon may be found in most 
standard works on phase equilibrium, for example, A. Findlay, A. N. 
Campbell, and N. O. Smith, "The Phase Rule," 9th ed, Dover Publica­
tions, Inc., New York, N. Y., 1951, Chapter 14. For the water-chloro­
form-ethanol system, see Landolt-Bornstein, "Zahlenwerte und Funk-
tionen," 6th ed, II/2c, Losungsgleichgewichte II, Springer-Verlag, 
Heidelberg, 1964, p 548. 

portant respects from those predicted by all the simple 
analytical equations of state, of which the van der 
Waals equation may be considered the prototype.3 

These "classical" equations of state either arise from 
some mean field approximation or they are empirical 
formulas based entirely on analytic functions. It may 
be supposed, analogously, that there would be signfi-
cant discrepancies between the behavior of a real 
ternary solution near a plait point and the predictions 
of the classical solution theories such as the multi-
component van der Waals equation of state or regular 
solution theory. As the critical point of a one-compo­
nent fluid is approached, the density difference pt — 
Pg between coexistent liquid and vapor phases is pre­
dicted by all the classical equations of state to vanish 
proportionally to the square root of the difference 
T1. — T between the temperature T and the critical 
temperature Tc 

P1- Pe~ A(TC - T)1-' (1) 

with some constant A characteristic of the substance. 
Thus, the coexistence curve in the temperature-density 
plane of the fluid is predicted to be parabolic in the 
neighborhood of the critical point, but in reality it is 
more nearly cubic 

P1 - Pg ~ A(T, -Tf /3 « Vs (2) 

Likewise, the mean-square fluctuation in the density, 
((Ap)2), which is determined by the isothermal com­
pressibility and in turn determines the magnitude of 
the critical opalescence, is predicted by the classical 
equations of state to diverge proportionally to (T — 
Tc)*1 as the critical point is approached from above 

((Ap)2) ~ B(T - r j - 1 (3) 

(3) For discussions of the inadequacies of the classical theories, as 
well as for summaries of the results of the Ising model (lattice gas) 
theories and the theoretical and experimental values of the critical point 
exponents which are quoted in this paper, see the recent reviews by 
M. E. Fisher, Kept. Progr. Phys., 30, 615 (1967); P. Heller, ibid., 30, 
731 (1967); L. P. Kadanoff, et al., Rev. Mod. Phys., 39, 395 (1967); 
and the recent analysis by M, S. Green, M. Vicentini-Missoni, and 
J. M. H. Levelt-Sengers, Phys. Rev. Letters, 18, 1113 (1967). 
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Figure 1. Schematic representation of the water-chloroform-
ethanol system at a fixed temperature ~ 2 0 ° . Composition vari­
ables are mole fractions. Dashed lines are tie lines and the circle 
marks the plait point P. 

with B another constant characteristic of the substance, 
but in reality the divergence is more rapid 

((ApY) ~ B(T - Tcy 7 « 1.3 (4) 

Similarly, the classical solution theories all predict 
that the binodal curve (two-phase coexistence curve) 
in the isothermal composition plane of a ternary so­
lution is parabolic in the neighborhood of the plait 
point, which is the analog of the incorrect eq 1, and 
that composition fluctuations diverge inversely propor­
tionally to the first power of the distance from the plait 
point, which is the analog of the incorrect eq 3. 

There are not yet experimental data of sufficient pre­
cision to confirm or deny the supposition that the neigh­
borhood of a plait point, like the neighborhood of the 
critical point of a one-component system, is in reality 
nonclassical.4 Theoretical models are now known, 
however, the partition functions of which can be found 
either numerically6 or analytically,6-9 but in any 
event without the approximations that lead inevitably 
to the classical results, and in all these models the sup­
position of nonclassical behavior is confirmed. Those 
which have been discussed analytically are all of one 
type, in that they are all reducible to the spin-V2 
Ising model by the "decoration" transformation.10 The 
model introduced and analyzed in the present paper is 
again one which is reducible to the spin-72 Ising 
model, but is otherwise of a type essentially different 
from the earlier ones, and has as its physical basis the 
mechanism of difunctionality described above in con­
nection with the water-chloroform-ethanol system. 
Its plait point behavior proves to be in exact accord 

(4) If it is granted that the plait point of a binary system at variable 
pressure is in principle the same as that of a ternary system at fixed pres­
sure, with "vacuum" in the former case playing the role of a third com­
ponent, then the measurements on the neon-argon system by W. B. 
Streett, J. Chem. Phys., 46, 3282 (1967), are relevant to the question 
raised here. Streett's data have been analyzed by J. Zollweg (private 
communication) who finds that the binodal curves near their plait 
points are indeed more nearly cubic than parabolic. 

(5) F. H. Stillinger, Jr., and E. Helfand, J. Chem. Phys., 41, 2495 
(1964). 

(6) B. Widom, ibid., 46, 3324 (1967). 
(7) G. Neece, ibid., 47, 4112 (1967). 
(8) R. K. Clark, ibid., 48, 741 (1968). 
(9) R. K. Clark and G. Neece, ibid., in press. 
(10) M. E. Fisher, Phys. Rev., 113, 969 (1959). 
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Figure 2. Two-dimensional illustration, based on the square-
planar lattice, of an allowed configuration in which a BB molecule 
is surrounded by AB molecules so as to leave only A ends at the 
boundary of the complex. 

with that of the earlier models, thus once more con­
firming the supposition of nonclassical behavior, and 
at the same time lending support to the conviction that 
the thermodynamic singularities at a plait point of a 
ternary system, like those at the critical point of a one-
component system, are universal in character, not de­
pending on the quantitative details of the molecular 
interactions that give rise to them. 

The new model and the reduction of its partition 
function to that of the spin-72 Ising model are de­
scribed in section 2. The binodal curve and the compo­
sition fluctuations in the neighborhood of the plait 
point are derived in section 3. In section 4 there is 
described another feature of the model which is 
interesting in its own right though irrelevant to the 
plait-point phenomenon. This is an antiferromagnetic-
like ordering in which the ordered state is roughly 
analogous to a liquid crystal or to the ordered state of a 
soap, and it occurs at high concentrations of that 
species which, in the model, plays the role ascribed to 
the ethanol in the discussion above of the mechanism 
of difunctionality. The results are briefly summa­
rized in section 5, where it is also pointed out that, 
though the model is a lattice model, this artificial as­
pect of it is probably not reflected in its plait-point be­
havior. 

2. Model Three-Component Solution 

Consider three species of difunctional ("diatomic") 
molecules AA, BB, and AB situated on, and completely 
filling, the bonds of a regular lattice such as the square 
planar in two dimensions or the simple cubic in three. 
Each end of a molecule is thus associated with a site 
of the lattice, and, if Z is the coordination number of 
the lattice (the number of bonds meeting at one site), 
then a total of Z molecule ends are associated with each 
site. The interaction energy between a pair of mole­
cules is taken to be + « if they are on the same bond 
of the lattice, so the bonds are forced to be singly oc­
cupied. Furthermore, the interaction energy is also 
taken to be +<» if the A end of one molecule and the 
B end of another are associated with the same site 
of the lattice, while the interaction energy is taken to be 
O otherwise. Thus, A ends may associate with each 
other, as may B ends with each other, but A's and B's 
repel infinitely strongly. In Figure 2 is shown an 
example of an allowed configuration in which a BB 
molecule is surrounded by AB molecules in such a way 
that the central BB is insulated; at the boundaries 
of the complex are only A ends so the complex as a 
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whole could be accommodated in a phase that was pre­
dominantly AA, while an uninsulated BB molecule 
could not have been. Moreover, as a consequence of 
the conditions that define the model, the Z molecule 
ends associated with each lattice site are either all A 
ends or all B ends, but never some of each, so that in 
any allowable configuration of the system every site 
may be unambiguously identified as an A site or a B 
site. It is this that allows a direct transcription to the 
spin-'/2 Ising model, where each lattice site is oc­
cupied by a spin in one of two possible spin states. 

Because the potential energy in this system never 
varies, being always 0 in every allowable configuration, 
the temperature is not a significant variable in the model, 
and, in particular, the coexistence curve that one ob­
tains in an isothermal composition plane at any one 
temperature is the same as that at any other.6 The 
model can be extended to include temperature as a 
significant variable; it is then no longer related to the 
spin-72 Ising model on the original lattice, but 
rather to that on a decorated lattice in which each site 
is replaced by a cluster of sites, completely intercon­
nected, with a coupling constant between clusters that 
differs from that within a cluster. We here restrict 
ourselves, however, to treating only the more prim­
itive model. 

Let WAA, A7BB, and A7AB be the number of molecules 
of each species in the mixture, with xAA, X^B, and 
XAB their respective mole fractions. If C is the total 
number of sites on the lattice, 1I2ZC is the total number 
of bonds, so 

A7AA + ^BB + A7AB = 1ItZC (5) 

while 

*AA + XBB + *AB = 1 ( 6 ) 

The corresponding activities ZAA, ZBB, and zAB are all 
infinite because by the definition of the model every 
available space on the lattice is occupied, but the ratio 
of any pair of these activities is in general finite, and 
modified activity variables f and £, defined by 

f = (ZBB/ZAA)1A £ = [ZAB/(ZBBZAA)1/2]V2 (7) 

are important variables in the theory. Likewise, the 
chemical potentials MAA, MBB, and MAB, related to the 
activities by 

MAA = kT In ZAA, etc. (8) 

where k is Boltzmann's constant and T is the absolute 
temperature, are all infinite, but the difference of any 
pair of them is in general finite. 

So long as A7AA + A7BB + NAB is fixed, so that 

d(#AA + A7BB + A7AB) = 0 

the relation 

MAA dÂAA + MBB dÂ BB + MAB dÂ AB = 

7«(MBB - MAA) dCÂBB - A7AA) + 

7«[MAB - VJCUAA + MBB)] d(ATAB - NAA - NBB) (9) 

holds as an identity, and in the present model the dif­
ferential coefficients on the right-hand side are manifestly 
finite for they involve only differences of the chemical 
potentials MAA, MBB, and MAB taken in pairs. If now 
Q(NAA, NBB, A^AB) is the number of distinguishable 

ways of placing the A7AA molecules AA, the NBB mole­
cules BB, and the NAB molecules AB on the 72ZC bonds 
of the lattice, one molecule on each bond, and subject 
to condition that only A ends or only B ends meet at 
any one site, it is then a consequence of eq 9 and of the 
definitions in eq 7 and 8 that the partition function of the 
model solution, for the ensemble in which f, £, C are 
fixed, is 

Ytt&Q = 
E e(ArAA,A7BB,A7

AB)rA7BB - N " £ N " - v - - -VBB 

all A7AA, NBB, A7AB CIIYV 
such that KlKJ) 

ArAA + A'BB + A'AB = 1ZiZC 

Fixed C, by eq 5, is equivalent to fixed NAA + NBB 
+ A7AB. It is seen from the structure of the summand 
in eq 10 that composition variables 8 and a defined by 

O = JCBB — ^AA 

(H) 
C — -XAB ~ XAA — *BB ( = 2 X A B — 1) 

are directly associated with the modified activities 
f and £, and these prove to be the significant compo­
sition variables in the model. 

Now consider the same lattice, alternatively, as the 
underlying lattice of an Ising magnet, defined as fol­
lows. Let there be a spin f or | at each lattice site; 
let A7I be the number of f spins and Ni the number 
of J spins, so that N^ + M = C, the number of sites. 
The directions f or J, are taken to be respectively 
parallel or antiparallel to the direction of an external 
magnetic field. Also let Nn be the number of pairs 
of neighboring f spins, N^ the number of pairs of 
neighboring J spins, and Nn the number of pairs of 
neighboring spins for which one member of the pair 
is f and one \ . The definition of the Ising model is 
then completed by taking the energy E associated 
with any configuration of the C spins to be 

E = J(Nn - A7TT - N1.) - H(N, - N) (12) 

with J a constant spin-spin coupling parameter with 
the dimensions of energy, and with H the product of 
the magnetic field strength and the constant magnetic 
moment per spin, so that it, too, has the dimensions 
of energy. Note that with Z the coordination number 
of the lattice, the relation 

N:] - N11 = 1IiZ(N- - N) (13) 

is an identity, so that the energy of the Ising system can 
equally well be taken as 

E = J(Nn - A7,, - N11) - (2/Z)H(Nu - N1) (14) 

and that the relation 

Nn + NA + Nn = 1I2Z(N, + N1) = 7,ZC (15) 

is also an identity. 
If we now identify every A-end site in the solution 

model as a spin j site and every B-end site as a spin f 
site, then, because of eq 13 and 15, the summation in 
eq 10 is the same as a sum over all Ni and N1 subject 
to N1 + Ni = C, while the assignments of molecules 
to bonds in the solution model are in 1:1 correspondence 
with the assignments of spins to sites in the Ising model, 
so the combinatorial factor Q in the summand of eq 10 
is identical with the combinatorial factor of the Ising 

Journal of the American Chemical Society / 90:12 / June 5, 1968 



3067 

model. It follows, upon also taking account of eq 14, 
that the fixed f, if, C partition function of the solution 
model in eq 10 is the same as the fixed H, 9, C partition 
function of the Ising model at temperature 6, with the 
activity variables f and £ of the solution model related 
to the magnetic field and to the temperature of the 
equivalent Ising model by 

J-V.2 = eH/M ( 1 6 ) 

£ = e~J/ke (17) 

It is convenient to symbolize exp(—•//&#) by X, so that 
the second of these relations is £ = X. The solution 
composition variables 5 and <r defined in eq 11 are re­
lated respectively to the magnetization per spin, /, 
and to the zero-field configurational energy, E0, of 
the Ising model, defined by 

I=(N,- N1)JC 

E0 = EK = 0 = J(Nn - Nv - Nn) (18) 

The various connections and equivalences, and some of 
the definitions, are summarized in Table I. It should 
be noted that the only variable temperature and con­
figurational energy that appear are those of the equiv­
alent Ising model; as pointed out before, the tem­
perature of the solution model is irrelevant and its 
configurational energy is always 0. 

Table I. Equivalences between the Variables of the Solution 
Model and Those of the Spin-y2 Ising Model 

Solution model Ising model 

S = XBB — XAA / 

a = 2xAB - 1 (2/ZJQE0 
I X = exp(-J/k6) 
f'Az exp(H/k$) 

3. Binodal Curve and Composition Fluctuations in the 
Neighborhood of the Plait Point 

The spontaneous magnetization of the equivalent 
Ising model is reflected in phase separation in the 
solution model, and the Curie point of the ferromagnet, 
where the spontaneous magnetization vanishes, be­
comes a plait point in the ternary system. If Ec is the 
value of the zero-field configurational energy of the 
Ising model at its Curie point, then the plait point in 
the composition plane of the solution model occurs at 
& = 0 and a = (2jZJC)EQ. That 5 = 0 at the plait 
point implies XAA = *BB there, an obvious conse­
quence of the symmetry of the model with respect to 
the species AA and BB. The value of EC/JC in the 
Ising model, hence also the value of * A B at the plait 
point of the solution model, depends only on the di­
mensionality and topology of the underlying lattice, 
but on nothing else. For the common three-dimen­
sional lattices (2/ZJC)E0 ranges between about11 —0.33 
and —0.24, so the value of XAB at the plait point is in 
the range 0.34-0.38, and correspondingly the common 
value of XAA and *BB at the plait point is in the range 
0.33-0.31. Thus, in this solution model the plait 
point lies close to the centroid of the equilateral XAA, 
*BB, *AB composition triangle. 

(11) These are the negatives of the quantities called UJUo in the 
table given by M. E. Fisher, /. Math. Phys., 4, 278 (1963). 

The ferromagnetic phase transition occurs only in 
zero field and at temperatures 6 less than the Curie 
temperature 6C. The magnitude I0 of the spontaneous 
magnetization is a function of temperature, f(X) say 

/o = |/H-ol = f W 

which is defined for 9 < 9C and vanishes at 9 = 9C. Then 
from the correspondences in Table I, the bindoal curve 
is determined by 

i«i = m (i9) 
and at every point on the binodal curve and within the 
two-phase region 

r = i (20) 
Equation 19 is not yet fully explicit, for to know the 
form of the binodal curve as it would appear in a dia­
gram such as that of Figure 1 would require knowing 
5 as a function of the second composition variable a 
rather than as a function of the activity variable f. 
However, the zero-field configurational energy E0 of 
the Ising model is also a function of temperature, so 
that 

(2/ZJC)E0 = g(X) 

say. Then throughout the two-phase region of the 
solution model, including all points of the binodal 
curve 

* = g«) (21) 

In principle, with the functions f and g known from the 
Ising model, the activity variable £ could be eliminated 
from eq 19 and 21 to yield the equation of the binodal 
curve in the 5-cr composition plane of the solution. This 
will now be done, but only for the immediate neigh­
borhood of the critical point. 

For temperatures 6 less than but close to the Curie 
temperature 0C, the zero-field energy of the Ising model 
deviates from its value at the critical point proportion­
ally to a power of 9C — 9 or, equivalently, of Xc — X 

g(Xc) - g(X) ~ (Xc - X)'-"' (22) 

[X < Xc = exp(-J/kdc)] 

The exponent a' is the index of the divergence of the 
specific heat of the Ising system as 6 -*• dc from below; 
i.e., the specific heat diverges as (Xc — X)-"'. The 
spontaneous magnetization of the ferromagnet is like­
wise proportional, near the Curie point, to a power of 
0C — 9 or, equivalently, of Xc — X 

i(X) ~ (Xc - XY (23) 

which is analogous to the difference in density between 
coexistent phases of a one-component fluid near its 
critical point, as given by eq 2. From eq 19 and 21-
23 it follows that near the plait point the binodal curve 
in the b-u composition plane of the mixture is given by 

|5| ~(<rc - aY/{1'al) (24) 

where uc is the value of a = 2XAB — 1 at the plait point. 
In the event that a' = 0, corresponding to a logarithmic 
divergence of the Ising model specific heat, the right-
hand side of eq 24 must be slightly modified.6 

The binodal curve and plait point are shown sche­
matically in the lower part of the composition triangle 
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AA BB 

Figure 3. Phase diagram of the model system. Composition vari­
ables are mole fractions. The lowest curve is the binodal, with the 
plait point P; tie lines (not shown) are horizontal. The dashed 
curve, not a locus of phase transitions, separates the region of 
compositions where the solution is analogous to a ferromagnet 
(lower region) from that in which it is analogous to an antiferro-
magnet (upper region). The curve RR' is the locus of phase 
transitions associated with the onset of long-range order. 

in Figure 3. The binodal curve is symmetric about the 
vertical line xAA = XBB- Near the plait point it is 
characterized by the exponent /3/(1 — a'), just as are 
the coexistence curves of the earlier models.6-9 Be­
cause a' is small, if not zero, /3/(1 — a') is close to /3, 
the exponent that characterizes the temperature de­
pendence of the spontaneous magnetization of the 
Ising model; and this j3, in turn, is close to Vs. J u s t 

as is the experimental value of the exponent that charac­
terizes the temperature-density coexistence curve of a 
one-component fluid, as given by eq 2. The plait 
point is nonclassical, for /3/(1 — a') is in any event not 

We may also determine the way in which the mean-
square composition fluctuations ((AS)2) and ((Ao-)2) 
in any small but fixed subvolume of the system (or, 
alternatively, in the whole system at fixed f, £, and C) 
diverge as the plait point is approached through the 
one-phase region. The first of these, which proves to 
be the more rapidly divergent of the two, is the major 
factor in determining the extent of the critical opal­
escence, or, more specifically, the magnitude of the 
zero-angle light scattering, in the neighborhood of the 
plait point. 

Consider first those states of the system that, in 
Figure 3, would be represented by points above the 
plait point on the vertical line xAA = *BB, where the 
fluctuations in 5 that occur are then fluctuations from 
the mean value 0. In the equivalent Ising model the 
mean-square fluctuations ((AE0)

2) in the zero-field con-
figurational energy of the system, at fixed temperature, 
are determined by, and are proportional to, the zero-
field specific heat. The latter, in turn, diverges pro­
portionally to a negative power, — a say, of d — dc or 
of X — Xc, as the Curie temperature is approached from 
above. (Like the exponent a' that characterizes the 
divergence of the specific heat when the Curie point 
is approached from below, a is small or zero; if 
zero, the divergence is logarithmic and the formulas 
given below would again require slight modification.6) 
Thus 

((A£„)2) ~(X- Xc)-" (25) 

Likewise, the mean-square fluctuations ((A/)2) in the 
magnetization are determined by, and are proportional 
to, the magnetic susceptibility. The latter, in turn, in 
the absence of an external magnetic field, diverges 
proportionally to a negative power, —7 say, of 6 — 9C 

or of X — Xc, as the Curie temperature is approached 
from above. Thus, as the Curie point is approached 
from above, in zero field, the mean-square fluctuations 
of the magnetization away from the value 0 are given 
by 

((A/)2) ~ (X - X0)- (26) 

From the correspondences in Table I, these formulas 
for ((AZi0)

2) and ((A/)2) in the Ising model become 

((A(T)2) ~ Q - & ) -

and 

((AS)2) ~ a - &-y 

in the solution model, giving the mean-square fluctu­
ations in a and 5 as the plait point is approached 
through the one-phase region along the line xAA = 
XBB in the composition plane. But because the ex­
ponent a characterizes the divergence of the zero-
field specific heat of the Ising model as 8 —*• 8C from 
above, the function g(X) that yields the zero-field con-
figurational energy is such that 

g(X) - g(Xc) ~ (X - XQy-« (X > Xc) 

in analogy with eq 22. Therefore, in the solution 
model, along the line XAA = *BB 

a - ere = 2(XAB - *ABC) ~ (£ - fc)1 -" 

where XABC is the value of XAB at the plait point, so the 
mean-square composition fluctuations are 

((A(T)2) ~ (XAB - *ABC)-° / (1-a) (27) 

((AS)2) ~ (XAB - x A B c r T ( 1 - a ) (28) 

having been expressed finally in terms of the distance 
XAB — *ABC from the plait point as measured along the 
line XAA = XBB in the composition triangle. These ex­
pressions for the mean-square fluctuations in composi­
tion are identical with their analogs in the earlier 
models.6'8 

Because a is small, if not zero, 7/(1 — a) is close to 
7, the exponent that characterizes the temperature de­
pendence of the magnetic susceptibility of the Ising 
model, and this 7, in turn, is close to 1.3, just as is the 
experimental value of the exponent that characterizes the 
compressibility (and hence the mean-square fluctuations 
in density) of a one-component fluid, as given by eq 
4. The plait point is then also nonclassical with re­
spect to composition fluctuations, for in the classical 
theories the analog of ((A5)2) diverges proportionally 
to the reciprocal of the distance from the plait point, 
whereas 7/(1 — a) is in any event not 1. 

Because a « 7, the divergence of ((Ao-)2) is much 
weaker than that of ((AS)2). The mean-square fluctu­
ations in any composition variable which is not merely 
a function of xAB alone, i.e., of a alone, but depends 
also on 5, would show the stronger divergence, pro­
portional to the power —7/(1 — a) of the distance from 
the plait point. This result is undoubtedly general; 
that is, in any three-component solution there will be 
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one composition variable (not necessarily the mole 
fraction of one of the components), fluctuations in 
which, like those in XAB in the present model, are only 
weakly divergent, their divergence being characterized 
by the exponent a/(l — a), while all composition 
variables that are not merely functions of that one 
alone would undergo the more strongly divergent 
fluctuations characterized by the exponent 7/(1 — a). 

In either of the two spontaneously magnetized 
states (either net spin f or net spin \ ) below 
the Curie point, in zero field, the mean-square fluctua­
tions in the magnetization of the Ising model diverge 
proportionally to a power —7' of dc — 6 or of Xc — X 

((A/)2) ~ (*c - X)-'' 

The exponent 7 ' may in principle differ from the ex­
ponent 7 in eq 26 that determines ((A/)2) when the 
critical point is approached from the high-temperature 
side, and there are indeed suggestions that 7 ' may be 
slightly greater than 7, perhaps 7 ' ~ 1.32 as opposed 
to 7 ~ 1.25. According to eq 23 the spontaneous mag­
netization itself is proportional to (Xc — X)13. There­
fore, from the correspondences in Table I, and from the 
known form of the binodal curve as given by eq 24, 
the mean-square fluctuations in 6 that occur in solutions 
of mean composition xAA, *BB, *AB> just at the coexis­
tence curve near the plait point, may be described by 

<(A5)2) ~ | 5 | - * ' " ~ !XBB - XAAI- 7 7 3 

or alternatively by 

((AS)2) ~ (<TC - t r ) - y / ( 1 —'> ~ ( x A B
c - X A B ) - y / ( 1 _ a ' ) 

The second of these is to be compared with eq 28, 
which determines the nature of the divergence of the 
composition fluctuations as the plait point is approached 
from above, rather than along, the binodal curve. 

As the plait point is approached the distance over 
which the local composition at once point of the 
solution is correlated with that at another increases 
without limit, and the divergence of the fluctuations 
in composition may be ascribed to the divergence of 
this correlation distance. Close to the plait point the 
correlation length is much larger than the lattice spacing, 
and it is this that allows us to argue in section 5 that 
the presence of the underlying lattice is probably ir­
relevant to the plait-point behavior of the model. 

4. Antiferromagnetic-Like Ordering 

The dashed curve in Figure 3 is the locus § = 1, 
that is, by the definition of £ in eq 7, the locus of so­
lution compositions at which the activity of the species 
AB is the geometric mean of the activities of AA and 
BB. The condition J = I occurs at J/6 = 0 in the 
equivalent Ising model and so marks the transition 
between those states of the solution (£ < 1) that are in 
correspondence with states of a ferromagnetic Ising 
model (Jjd > 0) and those (£ > 1) that are in corre­
spondence with states of an antiferromagnetic Ising 
model (JjO < 0). The plait point and binodal curve 
lie below this locus and reflect the spontaneous mag­
netization and Curie point of an equivalent ferro-
magnet, but above it there must be another phase-
transition curve reflecting the onset of sublattice mag­
netization in an equivalent antiferromagnet.12 Unlike 

the binodal curve, this would not be a coexistence 
curve bounding a two-phase region, for the transitions 
it would mark would be of higher than first order and 
would not be accompanied by phase separation. 

The demarcation line £ = 1, or Jjd = 0, is not itself 
a locus of phase transitions but rather may be looked 
upon as the locus of points representing the equilibrium 
states that a ferromagnet (J > 0) and an antiferro­
magnet (J < 0) have in common at infinite temperature, 
but also at infinite magnetic field, with H/d finite and 
variable. In this condition there is in general a non-
vanishing net spin determined by H/9, but there is no 
correlation between spins, so that N n = 1IiZC-
(AVO2, Nn = 1I2ZC(N1IC)2 and Nn = ZC(N1-
NJC2), and hence Nn

2JN11N11 = 4. Thus, the 
equation of the locus £ = 1 in the composition plane of 
the solution is 

XAB2/*AA*BB = 4 (29) 

and it is this which is plotted as the dashed curve in 
Figure 3. At the highest point on the locus X\A — 
-*BB = 1U, xAB = 1Ii- (The condition £ = 1, it was 
observed, is ZAB2 = ZAA^BB, which is equivalent to 
2MAB = MAA + MBB! this, together with eq 29, means 
that on the locus in question the chemical potentials 
and concentrations satisfy the same relations as would 
be satisfied if the solution were an ideal mixture of 
diatomic molecules with A and B heavy isotopes of the 
same element and with the three constituents related 
by the mobile chemical equilibrium AA + BB <=* 2AB. 
This is a purely formal analogy, however, and holds 
only on the locus £ = 1; the solution is in reality not 
ideal, and the three constituents are in reality indepen­
dent, not in chemical equilibrium.) 

We now consider the ordering process that occurs at 
high £, or high XAB- In the extreme where xAB = 1, in 
any allowable configuration of the molecules every A 
site necessarily has only B sites for its Z neighbors, and 
vice versa. If the lattice is composed of two inter­
penetrating sublattices, such that the neighbors of the 
sites of one of the sublattices are all to be found on the 
other (the simple cubic lattice, for example, is of this 
nature), then in the extreme XAB = 1 all the A sites are 
on one sublattice and all the B sites on the other. At 
low concentrations of AB, by contrast, such inequali­
ties in the sublattice occupancies can be at most short-
ranged, and each infinite sublattice contains half of all 
the A sites and half of all the B sites. There is a transi­
tion curve, such as the curve RR' in Figure 3, discussed 
below, which marks the onset of long-range sublattice 
ordering; in states of the system represented by points 
above, but close to, the transition curve, slightly more 
than half the A sites and slightly less than half the B 
sites are to be found on one sublattice, and vice versa 
on the other. This inequality in sublattice occupancy 
becomes more extreme the more deeply one penetrates 
into the upper region of the phase diagram, until at 
XAB = 1 the sublattice ordering is complete. In the 
equivalent Ising antiferromagnet (J < 0), it is energeti­
cally favorable for neighboring spins to be antiparallel. 
At temperatures below an antiferromagnetic phase 
transition temperature that depends on the magnetic 
field, one sublattice will contain more than half of all 

(12) We are grateful to J. F. Nagle for a helpful discussion of this 
question. 
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the f spins and less than half of all the \ spins, and 
vice versa on the other sublattice. As 6 -*• 0 in the 
absence of an external field (analogous to *AB -*• 1 in 
the solution), the antiferromagnet approaches the ex­
treme condition in which every site on one sublattice is a 
spin f site and every site on the other is a spin \ site; 
there is then exact and perfect f , | alternation from 
site to site of the composite lattice. 

In zero field the mean magnetization of the antiferro­
magnet vanishes, so YV t = /Vj, and in this condition 
the onset of unequal sublattice occupancy is known to 
occur when the configurational energy has the same 
value, Ec, that it has at the Curie point of the corre­
sponding ferromagnet, i.e., of the ferromagnet which has 
a coupling constant / of the same magnitude but oppo­
site (now positive) sign. Thus, one point on the phase-
transition curve we are seeking in the upper region of 
the composition triangle must be the point S = 0, <r = 
— erc, that is, the point 

•XAA = -*BB = 1A-^AB0 XAB = 1 — XABC (30) 

where xAB
c, as before, is the value of *AB at the plait 

point of the binodal curve that appears in the lower 
region of the composition triangle. 

At 8 = 0 in a nonvanishing external magnetic field, 
the equilibrium configuration of the Ising antiferro­
magnet is either that of perfect parallel spin alignment 
or perfect spin alternation, according to the relative 
values of H and \J\. The transition between these two 
possibilities occurs when H = lliZ\J\, for then the 
energies of the two competing configurations are equal. 
This condition of the antiferromagnet corresponds not 
to a single point in the composition triangle of the solu­
tion but to the whole of the sides opposite the AA and 
BB vertices, whereas, still at B = 0, all values of H 
greater than l\iZ\J\ correspond only to the AA and BB 
vertices, while all values of H less than 1I2Zl J\ corre­
spond only to the AB vertex. The points R and R' in 
Figure 3, where the phase transition curve we are 
seeking intersects the sides of the composition triangle, 
are known, then, to correspond to the condition 6 = 0, 
H = lliZ\j\ of the equivalent antiferromagnet. But to 
know the location of these points on the sides of the 
composition triangle requires a knowledge not of 6 and 
H there but of E and /, which is equivalent to locating 
the transition density of the hard-core lattice gas. The 
value of * A B at the points R and R' is, more specifically, 
the ratio of the transition density to the close-packed 
density of the hard-core lattice gas, and is13 0.43 for the 
simple cubic lattice and 0.36 for the body-centered 
cubic lattice. These points R and R', together with the 
one point given by eq 30, are the only points of the en­
tire phase-transition curve which are known, and, fur­
thermore, it is only at these points that the sublattice 
ordering has been quantitatively characterized. 

The whole of the phase-transition curve can be found 
in the Bethe-Guggenheim approximation. Either from 
the potential distribution formulation of statistical 
mechanics14 as applied to a certain pseudo-lattice (a 
Cayley tree), or by rearrangement of an equation given 
by Kasteleijn15 in connection with the statistical me­
chanics of an adsorbed monolayer, one may find the 

(13) D. S. Gaunt, J. Chem. Phys., 46, 3237 (1967). 
(14) B. Widom, Ibid., 39, 2808 (1963). 
(15) P. W. Kasteleijn, Physica, 22, 397 (1956). 

transition curve in question to be given in the Bethe-
Guggenheim approximation by 

1 + a = z^T(1 ~ 52) 

that is, by 

2*AB = _ [1 - (*BB - *AA)2] 

This approximation constitutes one of the classical, 
mean-field solution theories, however, so its account of 
the sublattice ordering, like its description of the shape 
of the binodal curve near the plait point, is certain to be 
erroneous. 

5. Summary and Discussion 

The major results of this theory are those on the non-
classical nature of the plait-point phenomenon. The 
binodal curve in the neighborhood of the plait point is 
not parabolic, which contradicts the predictions of all 
the classical solution theories; instead, the binodal curve 
is described by eq 24, which shows it to be more nearly 
cubic. Likewise, composition fluctuations diverge not 
as the reciprocal of the distance from the plait point, 
which is the prediction of the classical theories, but 
more rapidly, as given by eq 28. These nonclassical 
results are in exact accord with those found in other 
solution models that, like the present one, avoid approx­
imations of the mean-field type. That the nonclassical 
results have so far been found only in lattice models 
does not make them inapplicable to real liquid solu­
tions. It was pointed out in section 3 that, as the plait 
point is approached, the composition correlation length 
becomes much larger than the lattice spacing. It is, 
therefore, highly probable that the underlying lattice, 
as well as the specific form of the short-ranged inter-
molecular forces and other model-dependent details, 
are all quite irrelevant in the neighborhood of the plait 
point, and that the behavior expressed by eq 24 and 28 
is universal. In these respects the situation may be like 
that at the liquid-vapor critical point of a one-com­
ponent fluid, where the thermodynamic singularities 
are nonclassical and apparently universal, and are de­
scribed with great fidelity by the lattice gas model. 

The present model was also seen to imply, at certain 
compositions, a transition to an ordered state. Though 
ternary liquid solutions do not in general undergo the 
sublattice ordering found in section 4, it should be noted 
that many organic soaps do exhibit liquid crystal and 
other ordered phases. Since the action of the AB 
molecules in increasing the mutual solubility of AA and 
BB is suggestive of the action of a soap, as mentioned 
earlier, it may be significant that the model solution 
undergoes this transition at high concentrations of AB. 
Here, however, the character of the transition may well 
depend on the details of the model. We have seen that 
the long-range order of the model's lattice structure 
does not in itself imply long-range order in the com­
position of the solution, which is all that could have 
affected the plait point; but the structural order of the 
lattice does imply long-range correlations of molecular 
orientations, for in the present model the molecules are 
constrained to lie along bonds of the lattice, and such 
crystalline order in the molecular orientations might 
well enhance the tendency toward unequal sublattice 
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occupancies. Thus, while not relevant to the plait 
point, the orientational constraints imposed by the 
model may play an important role in the antiferro-

Recently, Hobbs, Jhon, and Eyring2a developed the 
. domain theory of the dielectric constants of hy­

drogen-bonded liquids in which the following assump­
tions were made. 

(1) Liquid water and other hydrogen-bonded liquids 
are made up of a mosaic of roughly bricklike domains 
with the dipoles in a particular domain having an 
average resultant moment n cos 9 along the direction 
of maximum polarization for the domain, while the 
direction of maximum polarization of neighboring do­
mains tend to be rotated through 180° with respect to 
the first in the same way magnets juxtapose south 
poles against north poles. For perfect tetrahedral 
bonding cos 6 gives the value of 1, while for bent hy­
drogen bonds2b cos 6 is correspondingly smaller. 

(2) Under the electric field, those domains which are 
favorably oriented with respect to the field grow at the 
expense of the less favorably oriented domains until 
the steady state is reached. The relaxation process 
involves only the molecules at the interface between 
domains. 

The resulting mean dipole moment for solid-like 
molecules is then JX = /J.2 cos2 6FJkT, while for the gas­
like molecules, Jx = fx2F/3kT since such molecules 
orient freely in the local field F.3 

The use of the foregoing assumptions and the concept 
of the significant structure theory of liquids4 lead to the 
following equation for the dielectric constants of hy­
drogen-bonded liquids such as liquid water. 

(e - n2)(2e + n2) = 

3e 
N(n* + 2Y(V^G , V - V s ^ \ 

4 M ^ J VvJf + —y~ WT) (1) 

(1) (a) University of Virginia; (b) University of Utah. 
(2) (a) M. E. Hobbs, M. S. Jhon, and H. Eyring, Proc. Natl. Acad. 

Sci. U. S., 56, 31 (1966); (b) J. A. Pople, Proc. Roy. Soc. (London), 
A205, 163 (1951). 

(3) P. Debye, "Polar Molecules," Dover Publications, Inc., New York, 
N. Y., 1945. 

(4) (a) H. Eyring, T. Ree, and N. Hirai, Proc. Natl Acad. Sci. U. S., 
44, 683 (1958); (b) H. Eyring and T. Ree, ibid., 47, 526 (1961); (c) 
H. Eyring and R. P. Marchi, / . Chem. Educ, 40, 562 (1963). 

magnetic-like ordering, and the details of this phase 
transition might well be model dependent in a way that 
the plait-point phenomenon is not. 

Here e, n, and n are the dielectric constant, the index of 
refraction, and the dipole moment, respectively, and Vs 

and V are the molar volume of the solid-like structure 
in the liquid and the molar volume of the liquid, respec­
tively. 

This model differs from the Onsager6 and Kirkwood6 

models in an essential point. This is in the account 
taken of the forces due to neighboring molecules. 
Equation 1 was tested for the dielectric constants2a of the 
various forms of ice and of light and heavy water where 
excellent agreement between experiment and theory was 
found. 

The fact that the values found for G are nearly equal 
to unity is an extremely satisfying result in conjunction 
with the proposed model. 

Following our early work, Jhon, et al.,1 calculated the 
dielectric constants of various lower aliphatic alcohols 
by a similar scheme to that used for liquid water, and G 
values which were found to be slightly greater than 
unity were interpreted as indicating a slight degree of 
polymerization of alcohol molecules. 

In this paper, we extend the theory to the supercritical 
regions of hydrogen-bonded liquids for which no satis­
factory theoretical studies appear to have been made; 
second, the theory of the dielectric constant of some of 
the hydrogen-bonded liquid mixtures is developed. 

Dielectric Constant of Water in 
the Supercritical Region 

For the calculation of the dielectric constant of 
steam at supercritical temperatures under high pressure, 
we have to consider the pressure effect in eq 1. 

In a compressed region of dense gas or liquid, the 
pressure effect8 on Vs is not negligible, since some solids 
are fairly compressible. Thus, the pressure dependence 

(5) L. Onsager, J. Am. Chem. Soc, 58, 1486 (1936). 
(6) J. G. Kirkwood, J. Chem. Phys., 7, 911 (1939); G. Oster and 

J. G. Kirkwood, ibid., 11, 175 (1943). 
(7) M. S. Jhon, E. R. Van Artsdalen, J. Grosh, and H. Eyring, ibid., 

47, 2231 (1967). 
(8) T. S. Ree, T. Ree, and H. Eyring, Proc. Natl. Acad. Sci. U. S., 48, 

501 (1962). 

The Dielectric Constants of Mixtures and of the 
Supercritical Region of Some Hydrogen-Bonded Fluids 

Mu Shik Jhonla and Henry Eyringlb 

Contribution from the Department of Chemistry, University of Virginia, 
Charlottesville, Virginia, and University of Utah, Salt Lake City, Utah. 
Received November 27, 1967 

Abstract: Recently, the domain theory of the dielectric constants of hydrogen-bonded liquids proposed by 
Hobbs, Jhon, and Eyring has been successfully applied to the system of light and heavy water, various forms of ice, 
and to the lower aliphatic alcohols. In this paper, we apply the theory to the supercritical region of water. The 
theory is also developed for the calculation of the dielectric constant of mixtures such as water-methanol and 
water-dioxane. The model is quite satisfactory in all cases. 

Jhon, Eyring / Dielectric Constants of Mixtures 


